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The problem of existence of libratory periodic motions of natural mechan- 
ical systems with many degrees of freedom is considered. Estimates are 

obtained of the number of libratory motions with specified total energy in 
terms of topological invariants in the region of possible motions .The problem 
of oscillations of a plane multi-component pendulum is considered as an example. 

1. Statement of the problem. Let us consider a natural mechanical sy - 
stem with configuration space M, potential energy u and kinetic energy T. We 
assume that the kinetic energy determines the complete Riemannian metric in M. The 
equations of motion of the system admit the energy integral T + U = h. For fixed 

h the motion takes place in the set 

v = {q E M : u (q) < h} 

which is called the region of possible motions. 
According to the principle of least action the motion inside v takes place along 

the geodesic lines of Jacobi’s metric 

(q’, 9’) = II q’ 11’ = 2 (h - u (q)) T (qt cr.) 

We shall consider the case when there are no equilibrium states of the system at 

the boundary of the region of possible motions, i.e. h is the normal value of poten- 

tial energy and 

infM U < h < supM V 

In that case v is a smooth manifold with boundary dV = z and which is 

a smooth manifold of dimension smaller by one than the dimension of V. We also as- 

sume the existence of h’ < h such that the set {q E V : U (q) > h’} is compact. 
It is possible to introduce in natural mechanical systems, by analogy with systems 

with a single degree of freedom, libratory periodic motions. Trajectory of a libratory 
motion with total energy h has two common points with the boundary of the region of 
possible motions, and the representative point of the system performs an oscillatory mo- 
tion between these two points Cl]. Below such motions are called librations in region 

I’. The existence of librations was first proved by Seifert in the case when the re - 
gion of possible motions is diffeomorphic to an n -dimensional disk f.2 1. It was shown 

in [l] that librations exist when region V is diffeomorphic to the product of a closed 

manifold by a closed segment. Here that result is extended to the case of more corn - 

plex regions of possible motions. 
We denote by I‘ (n) the least possible number of n generatrices tn any X -group, 
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and by ‘v / x the topological space obtained from ‘c7 by contracting 2 to a point. 
The ~ndam~tal group of that space is denoted by n f V / 2) , 

Theorem. The number of librations in region v is not less than r (X (V/2)). 
Note that this number is not smaller than the first Betti number of region I/ modulo z1. 

In particular, if ): consists of 12 connected components, the number of libra - 
tions in region V is not less than t2 - 1. In that case it is possible to&ate further- 
more that for each connected component of the 2 manifold there exists a libration 

whose end is on that component, and the trajectories of such librations do not have crunodes* 

2, Geometry of boundary neighborhood. Let 4 E 2 and t > 0. We 
denote by ‘pt (q) the solution of equations of motion of the considered mechanical 
system with initial conditions 

‘PI (9) If=* = 97 (2.1) 

Function U has no critical points on 2, hence 

$C u (cpt (9)) It=* = - 2T (a, grad u (q)) < 0 

Since manifold 2: is compact, the smooth image 

(P:x x[O+)+K cP(w)=cpt(q) 

(2.2) 

is a homeomorphic representation of the fairly small neighborhood Z x (0) on some 
neighborhood of 2, and the inverse image is smooth outside x. 

Let s (q, t> be the arc length in Jacobi % metric along the geodesic t * ($9 (9) 

W)=\~&dq)~dt = j1’2(h-U(et(q)))dt 
0 0 

It follows from (2.1) and (2.2 ) that 

s (Q, 0) = + sfq,tf~~-I,=~S(~,t)It=*= 0 

-&s I&2) (t=cl> 0 

By the theorem on implicit function it is possible to solve the equation rs zzz 

s (9, t) for t = t (9, r) when r > 0 is fairly small and function t (4, r) is 
smooth and 

t (q9 0) = 0, (2.3) 

The mapping (4, r) H (9, t (4, f)) is determinate for all Q E X and fairly 
small r> 0. Since its Jacobian is equal &/6?rIr4>0 when r-=0 and 

the set 2 is compact, that mapping is a diffeomorphism in a fairly small neighbor - 

hood of set I: x (0). Hence there exists e > 0 such that the mapping 

f : z x [O, El --f v 
can be determined by formula 
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f 67, 4 = cp (4, t (cl, w 
and 
of $ 

defines the homeomorphic mapping of 2 X [O, el onto some neighborhood 

, while the constraint of f on Z X (0, e] is a diffeomorphism. Note that the 

mapping (!I, r) --t f (q, T’) is smooth and that by virtue of (2. l), (2.2 J and (2.3 1 

(2.4) 

In particular ,the sets W, = f (Z x [O, sl) and Ye = V \ f (2 X IO, s)), 
as well as 2, = f (Z X {s}) are smooth submanifolds of v for any s E (0, s] , 
and diffeomorphic to I: X [O, 11, V , and 2 , respectively. 

The following statement is an analog of Gauss ’ lemma in Riemannian geometry [3 I. 

Lemma. For any point Qo E we there exists in We a unique geodesic of 
Jacobi’s metric which begins in 2 and passes through . qo. That geodesic intersects 

the hypersurfaces Z, at a right angle. 

The first statement of the lemma is implied by that for any 9=x the curve 
s H 1 tq, s) is a geodesic of Jacobi ‘s metric and mapping f is homeomorphism. 

To prove the second statement we consider in Z any smooth curve t w q(t) , 
and shall show that for any s E (0, a] 

F (t, s) E 
< yg- f (q (Q. 4 

Since s I-+ f (q (t), 8) is a geodesic of Jacobi’s metric, hence (see [3 1 1 

Consequently F is independent of s. By the Cauchy - Enmiakowski inequality 

The existence of 

follows from (2.4 J. Hence F - 0 when 8 -t 0. The lemma is proved. 
Using conventional methods of Riemannian geometry it is possible to show that 

the geodesic, whose existence is proved by the lemma, is the shortest curve connecting 

point q0 to the tet 2. 
The above results make possible the application of variational methods, as a whole, 

for proving the theorem. 

3. Proof of the theorem. Since the set {q E V : U (q) > h’} is com- 
pact, hence 

supv, u c h 
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The metric determined in M by the kinetic energy is, by assumption, complete, 
hence there exists in M a complete metric which in Ve coincides with Jacobi l s 
metric. We denote by 51 the set of piecewise-smooth curves o : 10, 11 --t Msuch 
that 0 (0), (D (1) E Z,. Let L, (0) be the length of curve o E Q in the 
derived metric. It is shown in C3 (41 that the extrema of functional L are the geo- 
desics of that metric whose ends are orthogonal to 2, , and that in each class of 

I’ C 62 of homotopic curves with ends on Es. the functional L attains the 
maximum L (F) = minp L (co). 

If r C P represents a nontrivial homotopic class (i. e. a homotopic class con- 
sisting of curves which cannot be reduced to a point), then L (I?) > 0. Let us assume 
that the length of curves in r attains their minimum on the geodesic 0 E r such 

that 0 ([O, 11) c V,. Then curve o is a geodesic of Jacobi’s metric and is or- 

thogonal to Z, at iis ends. Hence in accordance with the lemma it can be continued 
to the geodesic of Jacobi *s metric with ends in 2 . The latter is obviously the tra - 
jectory of libratory motion. 

Let us show that the number of classes that satisfy the above assumptions is not less 

than r (n), where n; = rc (V / 2). The natural projection 

evidently determines the mapping 

gm+g(r)=yEfi 
of the set of classes of homotopic classes of curves with ends in &, onto group n, and 

only those homotopic classes which contain curves lying in M \ Ve pass into the 
group unity. We determine function L in group R by the formula 

L (Y) = ,IP,f”,L (U 

Then L (y) 7 0 implies that y is the group unity. 

Since for any I> 0 the number of homotopic classes r C Q that satisfy con- 

dition L (r) < E is finite [3 (41, hence the number of elements y E a~ such that 

L (Y) < I is also finite. This shows that in every nonempty subset of TC function 
L reaches its minimum. Let the minimum of function L in the set of elements 

of group 3t different from unity be achieved on element YlE a. If elements 

Yl,. * -7 Yi-1 have been determined and are not generatrices of group n, then let 
yi be that element of group x on which the minimum of function L is achieved 

in the set of elements of group z that do not belong to the subgroup generated by 

Yl 1. * -7 Yi-1. In this way we obtain a finite or denumerable system {yi) of 

generatrices of group a with L (vi) > 0 for every i. We select among the ho- 
motopic ~las~t~ I’ C 51 such that g (I?) = yt that glass rt for which& (I?,)= 

L (Yf) l 
Let the minimum lengths of curves in rl obtain on the geodetic or E q. 

We shall show that curve or is entirely contained in the set Ve. 
Curve at evidently cannot be contained also in the set M \ Ve, hence in 

the opposite case there exists such t E (0, 1) that 01 (t) E Z,. Let 0 and 0’ 
be the constraints on the geodesic oi in 10, t] and [t, 1) , respectively. Then by 
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altering the parameter on curves o and o’ we obtain 0 En, 0’ Gz f2 and 

L (0) < L (@if, L (0’) < L (c)i)* We denote bv r and r’ the homotopic 
classes containing curves 0 and o’, and let Y = g (I’), and Y’ = g (I?‘). The 

L (Y) < L (r) < L (0) C L (@i) = L (Yi) and similarly L (y’) < L (yi). Since 
Y Y’ = Yt, hence at least one of elements Y, Y’ does not belong to the subgroup 

generated by elements Y1, . . ., yi-1 which implies that L (y) > L (yi) or 

L (Y’) > L (Yi), which contradicts the derived above inequalities. Hence a geo- 
desic of Jacobi 5s metric with ends on I: exists for each i . The theorem is proved. 

4, Example, As an example of application of the theorem in Sect, 1 we shall 
consider the problem of existence of periodic motions of a plane n -link mathema - 

tical pendulum. Let Z,, . . ,, I, be the lengths of links numbered consecutively from 

the suspension point, P,, , . ., P, be the weight of related material points, and 0i, . 

* *, 0, be the angles of indivi~al links to the vertical, 
The configuration space M is an n -dimensional torus and the potential energy 

is defined by 

uz-5 ni cos B,, 
i=l 

The set of potential energy critical points in one-to-one relationship with the set 

of all subsets of set { 1, . . . , n], and the index of the critical point that corresponds to 
subset I C (1, . . ., nl is equal to the number of elements I, and the critical value is 

h, = x ai - )J ai 
ie igr 

Let h be the noncritical value of potential energy, i. e, la + hr for all Z C 
{I, . . ., n) and 

* n 
(4. I ) 

In this case the region of possible motions V C M has a nonempty boundary I: . 
We set Jr’ = M \ V. Since V I E = M I V’, hence x (V I 2) = rr (M i V’). We set 

r = r (x. (AZ I V’)) and r’ = r (n (V’)). Let k < n be the number of critical 

points of potential energy with index n - I in set V. We shall prove that r = k. 

It follows from the basic theorem of the Morse theory [3] that M / V’ is homo- 

topically equivalent to a cell-like complex containing k one-dimensional cells, and 

that V’ is homotopica~y equivalent to a cell-like complex containing n - k one- 
dimensional cells. Hence r < k and r’ < n - k. Since the groups 3% (V’) and 

n (M / V’) generate the fundamental group of the n -dimensional torus, hence 

n<r+r’<kk+(n - k)=n. This shows that in all of the considered inequalities 

the equality sign is valid, and consequently r = k. 

Using the theorem of Sect. 1 we obtain the following statement: if h is the non- 
critical value of potential energy that satisfies inequality (4.1) , the number of libratory 
periodic motions with total energy h is not less than the number of indices i such 
that al i- . . - + ai- - W -b ai+l + * - * + an < h. 

Estimate of the lower bound of the libratory motion number varies from zero to n , 

depending on the value of the energy integral h . 
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